Interpolation error estimates for mean value coordinates over convex polygons
نویسندگان
چکیده
In a similar fashion to estimates shown for Harmonic, Wachspress, and Sibson coordinates in [Gillette et al., AiCM, to appear], we prove interpolation error estimates for the mean value coordinates on convex polygons suitable for standard finite element analysis. Our analysis is based on providing a uniform bound on the gradient of the mean value functions for all convex polygons of diameter one satisfying certain simple geometric restrictions. This work makes rigorous an observed practical advantage of the mean value coordinates: unlike Wachspress coordinates, the gradient of the mean value coordinates does not become large as interior angles of the polygon approach π.
منابع مشابه
Interpolation Error Estimates for Harmonic Coordinates on Polytopes
Interpolation error estimates in terms of geometric quality measures are established for harmonic coordinates on polytopes in two and three dimensions. First we derive interpolation error estimates over convex polygons that depend on the geometric quality of the triangles in the constrained Delaunay triangulation of the polygon. This characterization is sharp in the sense that families of polyg...
متن کاملMean value coordinates in 3D
Abstract: Trivariate barycentric coordinates can be used both to express a point inside a tetrahedron as a convex combination of the four vertices and to linearly interpolate data given at the vertices. In this paper we generalize these coordinates to convex polyhedra and the kernels of star-shaped polyhedra. These coordinates generalize in a natural way a recently constructed set of coordinate...
متن کاملOn the injectivity of Wachspress and mean value mappings between convex polygons
Wachspress and mean value coordinates are two generalizations of triangular barycentric coordinates to convex polygons and have recently been used to construct mappings between polygons, with application to curve deformation and image warping. We show that Wachspress mappings between convex polygons are always injective but that mean value mappings can fail to be so in extreme cases.
متن کاملBarycentric coordinates for convex sets
In this paper we provide an extension of barycentric coordinates from simplices to arbitrary convex sets. Barycentric coordinates over convex 2D polygons have found numerous applications in various fields as it allows smooth interpolation of data located on vertices. However, no explicit formulation valid for arbitrary convex polytopes has been proposed to extend this interpolation in higher di...
متن کاملA general construction of barycentric coordinates over convex polygons
Barycentric coordinates are unique for triangles, but there are many possible generalizations to convex polygons. In this paper we derive sharp upper and lower bounds on all barycentric coordinates over convex polygons and use them to show that all such coordinates have the same continuous extension to the boundary. We then present a general approach for constructing such coordinates and use it...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Advances in computational mathematics
دوره 39 2 شماره
صفحات -
تاریخ انتشار 2013